Regulation of fibronectin by thyroid hormone receptors.
نویسندگان
چکیده
Thyroid hormones regulate growth, development, differentiation, and metabolic processes by interacting with and activating thyroid hormone receptors and associated pathways. We investigated the triiodothyronine (T3) modulation of gene expression, in human hepatocellular carcinoma cell lines, via a PCR-based cDNA subtraction method. Here we present further data on one of the T3-upregulated genes, fibronectin (FN). We demonstrate that the induction of FN protein expression by T3 in TRalpha1 and TRbeta1 over-expressing cells was time and dose-dependent at the mRNA and protein levels. Blockade of protein synthesis by cycloheximide almost completely inhibited the concomitant induction of FN mRNA by T3, indicating that T3 indirectly regulates FN. Furthermore, nuclear-run on and FN promoter assay clearly can specifically increase the number of FN transcriptional demonstrated that the presence of T3 initiations. In addition, we further confirmed that the up-regulation of FN by T3 was mediated, at least in part, by transforming growth factor-beta (TGF-beta), because the induction of FN was blocked in a dose-dependent manner by the addition of TGF-beta neutralizing antibody. In an effort to elucidate the we demonstrated the involvement of the signaling pathways involved in the activation of FN by T3, mitogen activated protein kinase/c-Jun N-terminal kinase/p38 MAPK (MAPK/JNK/p38) pathway. Although T3 induces the expression of TGF-beta, neither wild-type nor dominant-negative Smad3 or Smad4 over-expression affected the activation of FN by T3. Thus, we demonstrate that T3 regulates FN gene expression indirectly at the transcriptional level, with the participation of the MAPK/JNK/p38 pathway and the TGF-beta signaling pathway but independent of Smad3/4.
منابع مشابه
Thyroid hormone dependent regulation of target genes and their physiological significance.
Thyroid hormone (T3) regulates growth, development and differentiation. These activities are mediated by nuclear thyroid hormone receptors (TRs), which belong to the steroid/thyroid hormone receptor superfamily of ligand-dependent transcription factors. In an effort to study the mechanism of target genes regulation and their physiological significance after T3 treatment in a TR alpha-overexpres...
متن کاملThe thyroid hormone-induced tail resorption program during Xenopus laevis metamorphosis.
Genes that are up- and down-regulated by thyroid hormone in the tail resorption program of Xenopus laevis have been isolated by a gene expression screen, sequenced, and identified in the GenBank data base. The entire program is estimated to consist of fewer than 35 up-regulated and fewer than 10 down-regulated genes; 17 and 4 of them, respectively, have been isolated and characterized. Up-regul...
متن کاملMechanism of Action of the Thyroid Hormone on the Heart
SUMMARY The foliowing cardiac effects may be attributed to thyroxin: 1-Thyroxin augments all anaerobic processes in the body includ::ng the heart, and decreases the glycogen content of the heart ( 1, 2, 5, 27). The resistance of the heart to anoxia is increased in hyperthyroidism ( 25). 2- Thyroxin influences the cardiac weight and prevents cardiac atrophy (3, 8, 10, 11, 19, 20, 21, 30...
متن کاملThe mechanism of action of thyroid hormones.
Thyroid hormone is essential for normal development, differentiation, and metabolic balance. Thyroid hormone action is mediated by multiple thyroid hormone receptor isoforms derived from two distinct genes. The thyroid hormone receptors belong to a nuclear receptor superfamily that also includes receptors for other small lipophilic hormones. Thyroid hormone receptors function by binding to spec...
متن کاملBoth thyroid hormone and 9-cis retinoic acid receptors are required to efficiently mediate the effects of thyroid hormone on embryonic development and specific gene regulation in Xenopus laevis.
Tissue culture transfection and in vitro biochemical studies have suggested that heterodimers of thyroid hormone receptors (TRs) and 9-cis retinoic acid receptors (RXRs) are the likely in vivo complexes that mediate the biological effects of thyroid hormone, 3,5,3'-triiodothyronine (T3). However, direct in vivo evidence for such a hypothesis has been lacking. We have previously reported a close...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular endocrinology
دوره 33 2 شماره
صفحات -
تاریخ انتشار 2004